Searching over 5,500,000 cases.

Buy This Entire Record For $7.95

Download the entire decision to receive the complete text, official citation,
docket number, dissents and concurrences, and footnotes for this case.

Learn more about what you receive with purchase of this case.

State v. Lemler

September 16, 2009



The opinion of the court was delivered by: Zinter, Justice


[¶1.] Probationer Neal J. Lemler's alcohol monitoring bracelet registered three "drinking events," and the State petitioned to revoke his probation. At the probation violation hearing, the circuit court ruled the State's expert was qualified to testify concerning transdermal alcohol detection. At the end of the evidentiary hearing, the court ruled the methodology utilized in the alcohol monitoring bracelet met the Daubert standard for admissibility of scientific evidence. After considering conflicting expert opinions whether certain variables could have affected the monitoring bracelet's results, the court entered findings that it was reasonably satisfied Lemler had consumed alcohol and violated probation. On appeal, Lemler challenges the qualifications of the State's expert, the admissibility of the alcohol monitoring bracelet data under Daubert, and the sufficiency of the evidence to support a probation violation. We affirm.

Facts and Procedural History

[¶2.] Lemler was arrested for driving under the influence of an alcoholic beverage in September, 2005. He pleaded guilty in April 2006 and was sentenced to two years in the penitentiary as a third-time offender. The court suspended execution of sentence and placed him on probation for two years.

[¶3.] As a condition of probation, Lemler was not to consume alcoholic beverages. On January 16, 2007, the court ordered use of a Secure Continuous Remote Alcohol Monitoring (SCRAM) bracelet to ensure compliance with this condition. Lemler was subsequently fitted with a SCRAM bracelet and he signed a SCRAM participation agreement. The agreement prohibited the use of any product containing alcohol, whether consumable or not.*fn1

[¶4.] The methodology underlying the SCRAM bracelet is premised on the fact that when blood containing alcohol passes through capillaries in the skin, a portion of the alcohol is absorbed into water compartments. After absorption, the alcohol evaporates through the skin like perspiration. Detection of alcohol is based on the principle (not contested in this case) that people eliminate approximately 1% of consumed alcohol transdermally through sensible (liquid) and insensible (vapor) perspiration. The SCRAM bracelet measures transdermal alcohol concentrations (TACs) in the insensible perspiration. There is no dispute in this case that transdermal alcohol testing has, since 1985, been a generally accepted way to detect alcohol in the blood, and this form of testing has been verified by several methods and scientists. Lemler agrees that "transdermal alcohol analysis has been proven to work with beverage alcohol." (Appellant's Br 16.)

[¶5.] The SCRAM bracelet is worn just above the ankle. It is fastened to the ankle with a strap and locking clip. The bracelet consists of two components. The first contains a fuel cell that measures ethanol gas in the insensible perspiration. The second component contains electronics that detect tampering, removals, and obstructions. This component also collects, stores, and transmits the alcohol measurements via radio frequency link to a modem installed in the probationer's home. The modem uploads the data to Alcohol Monitoring Systems (AMS), the SCRAM manufacturer, for analysis. According to AMS, the bracelet "flags" all transdermal alcohol readings of .02% alcohol by weight or higher. A drinking event is not "confirmed" unless there are three consecutive measurements over .02%. According to AMS, this requires the consumption, on average, of at least two drinks per hour. During normal monitoring, readings are taken approximately every hour. When the bracelet detects a reading of .02% or greater, the bracelet begins taking readings every thirty minutes.

[¶6.] When apparent drinking events are detected, the data is analyzed by AMS technicians using known correlations between TACs and blood alcohol concentrations (BACs).*fn2 When a person consumes alcohol, blood alcohol levels follow predictable changes that, when plotted over time, produce a BAC curve. This curve has: an absorption phase as alcohol is consumed and absorbed into the blood; a distribution phase as alcohol is distributed by blood throughout the body; and, an elimination phase as the body processes and eliminates alcohol through the liver, breath, and skin. TAC readings are also plotted, producing a TAC curve. Although the TAC curve is correlated with the BAC curve, three differences are observable. First, the initial detection of transdermal alcohol is delayed.*fn3 Second, peak TACs are lower than peak BACs. Third, TACs remain elevated for a period of time after BAC levels return to zero.

[¶7.] To confirm or exclude a drinking event, AMS technicians compare the TAC curve, particularly the absorption rate, the peak concentration, the elimination rate, and the total elimination time against the same known parameters for BAC curves. AMS's analysis, like that commonly utilized in blood-alcohol testing, is based on averages for all humans. According to AMS, averages are chosen that eliminate false positive readings by disregarding readings that are not sufficiently high to suggest alcohol consumption. If the SCRAM bracelet's periodic measurements reflect a TAC curve that is sufficiently correlated with known averages for beverage alcohol consumption, AMS presumes a drinking event has occurred.

[¶8.] In some cases, the data may reflect that an obstruction or interferant has come into contact with the bracelet. Obstructions are objects (such as paper) that can be inserted between the bracelet and the skin. Interferants are substances that, through exposure to the bracelet, can produce a TAC reading. Interferants include products containing consumable and not consumable alcohols, as well as some chemicals found in products such as antifreeze and certain cleaners. According to AMS, interferants can be excluded from data indicating alcohol consumption because interferants produce a different TAC curve.

[¶9.] The AMS analysis does not attempt to quantify how much alcohol is in a person's blood. Rather, the analysis only determines whether the subject has consumed alcohol. If alcohol is detected but the TAC curve also suggests the presence of an interferant, a drinking event is not confirmed. In those situations, AMS contacts the probation officer to question the probationer whether obstructions or interferants could have caused the SCRAM device to react. If interferants were being used, the data is reviewed again to see if the TAC curve is consistent with alcohol consumption and the concurrent presence of an interferant. If that review is not conclusive, then the event is not reported as a drinking event. If the data reflects alcohol consumption together with the use of an interferant, then a drinking event is reported.

[¶10.] Lemler's SCRAM bracelet detected transdermal alcohol on July 10, 11, and 12, 2007. On July 10, the bracelet detected alcohol at 8:00 p.m. On July 11, the bracelet detected alcohol at 11:00 a.m., continuing until after 1:00 a.m. the following morning, July 12. AMS technicians reviewed the data from the bracelet, and based on the TAC curves, concluded that Lemler had consumed alcohol. According to the AMS technicians, some of the data also reflected the presence of an interferant.

[¶11.] As a result of the data, the State filed a petition to revoke Lemler's probation. Lemler filed an affidavit denying that he had consumed alcohol and alleging that interferants used in his occupation as a farmer must have caused the readings. Lemler specifically alleged that he had been using John Deere brand graphite lubricant and starter fluid, and that he had cleaned out grain bins containing fermented grain. Lemler also called three witnesses who had different levels of contact with him on those days. Those witnesses testified that they did not observe evidence of alcohol consumption. Lemler finally alleged that he had sores caused by the SCRAM bracelet, and that the sores may have contributed to the readings.

[¶12.] The State called Jeff Hawthorne as an expert witness to explain the AMS analysis and refute Lemler's arguments. Hawthorne is the Chief Technology Officer at AMS. Over Lemler's objections, the circuit court recognized Hawthorne as an expert in transdermal alcohol detection. After considering the conflicting evidence presented by the parties, the court also determined that Hawthorne's opinions met the Daubert standard for reliability of scientific evidence.

[¶13.] Regarding Lemler's interferants defense, Hawthorne testified that interferants were detectable and excludable because they produced a different TAC curve than that produced by beverage alcohol consumption. Hawthorne explained that if a person pours or spills alcohol or other interferants on or near the bracelet, the TAC curve reflects a sharp peak or spike with very quick elimination, neither of which is present in a drinking curve. He also indicated that, unlike TAC curves from consumed alcohol, the absorption rate of topical interferants is very fast. With respect to fermented grain vapor inhalation, Hawthorne testified inhalation could not produce measurable amounts of alcohol in the blood that could be eliminated transdermally. Regarding Lemler's sores, Hawthorne testified that the sores would not have any effect on the bracelet's alcohol readings.

[¶14.] Hawthorne further testified that he had tested graphite lubricant and starter fluid, and found that neither produced data like that exhibited in the July 10-12 data. Because Lemler disagreed with the testing, the John Deere brand graphite lubricant was shipped to AMS for retesting. AMS's retesting, in Hawthorne's opinion, indicated that Lemler's alleged interferants did not cause the observed TAC readings. Hawthorne ultimately opined that, based on his education and experience, Lemler had consumed alcohol on the dates in question.

[¶15.] Lemler's expert witness was Dr. Michael Hlastala. Dr. Hlastala is an expert in physiology, alcohol physiology and pharmacokinetics.*fn4 He had testified in at least six other SCRAM cases and had researched and published numerous articles on transdermal alcohol exchange. Dr. Hlastala studied the diffusion of alcohol and the dynamics of the process, including variables in the human body that can influence diffusion. According to Dr. Hlastala, fuel cell detection of alcohol, the technology used to detect alcohol in the SCRAM bracelet, is generally accepted, but has limitations. One limitation is that fuel cells are nonspecific for ethyl alcohol. Therefore, other types of alcohol such as methyl alcohol, isopropyl alcohol, butyl alcohol, and 2-butoxyethanol (interferants) may cause a fuel cell reaction. Another source of detectable interferants is the hydroxyl group (OH), which is found in glycols and some cleaning solutions. Consequently, Dr. Hlastala opined that if contamination from such interferants entered the body and were diffused through the skin, the shape of the interferant TAC curve "may" not be different from a beverage TAC curve. Although he conceded that these non-consumable alcohols may be toxic if consumed, he opined that long exposure to chemicals under certain confined conditions could result in substance absorption into the skin and subsequent elimination, suggesting a possible source for fuel-cell readings unrelated to alcohol consumption.

[¶16.] After hearing the evidence, including the possibility of interferants having affected Lemler's bracelet's data, the circuit court found that the results of the SCRAM bracelet were relevant, reliable and met the Daubert standard of admissibility. After hearing the other lay witnesses, the court entered a finding that it was "reasonably satisfied that Neal Lemler consumed alcohol on the three occasions shown by the SCRAM bracelet." The court concluded that Lemler violated a condition of his probation.

Decision Whether Hawthorne Was Qualified to Render an Expert Opinion

[¶17.] Lemler argues that Hawthorne lacked the qualifications necessary to testify as an expert witness on transdermal alcohol detection. Lemler points out that the SCRAM technology is scientific in nature. Lemler contends that Hawthorne was not a qualified expert because he is not a scientist, he had only co-published one article on the subject, he had not studied or been peer-reviewed on the physiology of alcohol, and his curriculum vitae did not reflect evidence of responsibilities concerning the science behind the SCRAM technology.

[¶18.] The admission of expert testimony is governed by SDCL 19-15-2 (Rule 702), which provides,

If scientific, technical, or other specialized knowledge will assist the trier of fact to understand the evidence or to determine a fact in issue, a witness qualified as an expert by knowledge, skill, experience, training, or ...

Buy This Entire Record For $7.95

Download the entire decision to receive the complete text, official citation,
docket number, dissents and concurrences, and footnotes for this case.

Learn more about what you receive with purchase of this case.